Stream processing is a crucial component of modern data infrastructure, but constructing an efficient and scalable stream processing system can be challenging. Decoupling compute and storage architecture has emerged as an effective solution to these challenges, but it can introduce high latency issues, especially when dealing with complex continuous queries that necessitate managing extra-large internal states.
In this talk, we focus on addressing the high latency issues associated with S3 storage in stream processing systems that employ a decoupled compute and storage architecture. We delve into the root causes of latency in this context and explore various techniques to minimize the impact of S3 latency on stream processing performance. Our proposed approach is to implement a tiered storage mechanism that leverages a blend of high-performance and low-cost storage tiers to reduce data movement between the compute and storage layers while maintaining efficient processing.
Throughout the talk, we will present experimental results that demonstrate the effectiveness of our approach in mitigating the impact of S3 latency on stream processing. By the end of the talk, attendees will have gained insights into how to optimize their stream processing systems for reduced latency and improved cost-efficiency.